The reactions of some σ-alkynylnickel complexes with 7,7,8,8-tetracyanoquinodimethane

Peter Butler ${ }^{\text {a }}$, Anthony R. Manning ${ }^{\text {a,* }}$, C. John McAdam ${ }^{\text {b }}$, Jim Simpson ${ }^{\text {b }}$
${ }^{a}$ Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
${ }^{\mathrm{b}}$ Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand

Received 15 September 2007; received in revised form 30 October 2007; accepted 6 November 2007
Available online 22 November 2007

Abstract

The σ-alkynyl complexes $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}(\mathbf{1}), \mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-\mathrm{C} \equiv \mathrm{CH}$ (2) and $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-$ $\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)(3)$, reactwith 7,7,8,8-tetracyanoquinodimethane, TCNQ, at $30^{\circ} \mathrm{C}$ by insertion of the alkyne $\mathrm{C} \equiv \mathrm{C}$ into a $\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ bond to give $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{R}$ (4), from $\mathbf{1}$, $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-$ $\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{X}-\mathrm{C} \equiv \mathrm{CH}(5)$, from 2, and $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{X}-\mathrm{C} \equiv \mathrm{C}-$ $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \quad(6)$, and $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{X}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{Ni}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right.$) (7), from $3\left\{\mathrm{R}=\right.$ (a) $\mathrm{C}_{6} \mathrm{H}_{5}$, (b) $4-\mathrm{PhC}_{6} \mathrm{H}_{4}$, (c) $4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$, (d) 1- $\mathrm{C}_{10} \mathrm{H}_{7}$ (1-naphthyl), (e) 2- $\mathrm{C}_{10} \mathrm{H}_{7}$ (2-naphthyl), (f) $9-\mathrm{C}_{14} \mathrm{H}_{9}$ (9-phenanthryl), (g) $9-\mathrm{C}_{14} \mathrm{H}_{9}$ (9-anthryl), (h) $3-\mathrm{C}_{16} \mathrm{H}_{9}$ (3-pyrenyl), (i) $1-\mathrm{C}_{20} \mathrm{H}_{11}$ (1-perylenyl), (j) 2- $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$ (2-thienyl), (k) $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Fe}$ (ferrocenyl = Fc) and (l) H ; $\mathrm{X}=$ (a) nothing, (b) $1,4-\mathrm{C}_{6} \mathrm{H}_{4}$, (c) $1,3-\mathrm{C}_{6} \mathrm{H}_{4}$ and (d) $\left.4,4^{\prime}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right\}$. The reaction is regiospecificand the other possible insertion product, $\mathrm{R}-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)$ etc., is not formed. Under the same conditions, there is no evidencefor the reaction of TCNQ with the $-\mathrm{C} \equiv \mathrm{CH}$ of $2, \mathrm{PhC} \equiv \mathrm{CH}, 1,4-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{C} \equiv \mathrm{CH})_{2}$ or $\mathrm{FcC} \equiv \mathrm{CH}$, or for the reaction of more than one $\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ of TCNQ with a Ni-alkynyl moiety. Complexes 4-7 are all air-stable, purple solids which have been characterised by elemental analysis and spectroscopy (IR, UV-Vis, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR), and by X-ray diffraction for $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 l}$. The UV-Vis spectra of 4-7 are very similar. This implies that all contain the same active chromophore which, it is suggested, is $\mathrm{Ni}-\mathrm{C}(5)=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}$ and not $\mathrm{R}-\mathrm{C}(4)=\mathrm{C}(\mathrm{CN})_{2}$. This isconsistent with the molecular structures of $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 I}$ which show that the first of these potentially chromophoric fragments is planar or close to it with an in-built potential for delocalisation, whilst in the second the aryl group R is almost orthogonal to the $\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ plane. The molecular structures of $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 l}$ also reveal a short $\mathrm{Ni} \cdots \mathrm{C}(4)$ separation, indicative of a $\mathrm{Ni} \rightarrow \mathrm{C}(4)$ donor-acceptor interaction. The electrochemistry of $\mathbf{4}$ a shows aquasi reversible oxidation at ca. 1 V and complicated reduction processes. It is typical of most $\mathbf{4}$, but $\mathbf{4 I}$ is different in that it shows the same quasi reversible oxidation at ca. 1 V but two reversible reductions at -0.26 and -0.47 V (vs. $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]^{+/ 0} 0.0 \mathrm{~V}$). © 2007 Elsevier B.V. All rights reserved.

Keywords: Ni; Alkyne; TCNQ; Insertion

1. Introduction

The reactions of $\mathrm{C}_{2}(\mathrm{CN})_{4}$, TCNE, with metalloalkynes $\mathrm{MC} \equiv \mathrm{CR}$ have been extensively investigated. They give

[^0]cyclobutenyls which may subsequently isomerise to buta-1,3-dienyl complexes, $(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}(\mathrm{M})-\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{CN})_{2}$ so the overall reaction is the insertion of the CC triple bond into the double bond of TCNE [1-11]. Other activated olefins react similarly [12]; in particular there has been a single report on the use of 7,7,8,8-tetracyanoquinodimethane, TCNQ, in this role. With trans $-\mathrm{Pt}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{C}-\mathrm{Me})_{2}$ it gives trans- $\mathrm{Pt}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CCMe}) \mathrm{C}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{CN})_{2}\right\} \mathrm{C}\left\{\mathrm{CC}(\mathrm{CN})_{2}\right\}$ $\mathrm{Me}[13,14]$.

Herein we report on further reactions of TCNQ with metalloalkynes, particularly those containing a $\mathrm{Ni}\left(\eta^{5}\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)$ substituent. We had hoped that the reactions would give $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{R} / \mathrm{TCNQ}$ charge transfer complexes similar to those obtained from (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}-\right.$ aryl $)$ and TCNQ $[15,16]$ and expected these to be more stable for the more highly annelated aryl groups. In the event, this did not happen and all reactions gave insertion products similar to those described above.

2. Experimental

2.1. General procedures

Published procedures or extensions thereof were used to prepare $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Br} \quad[17], \quad \mathrm{RC} \equiv \mathrm{CH} \quad[18,19]$, $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH} \quad[20], \quad 1,3-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{C} \equiv \mathrm{CH})_{2} \quad[21], \quad 1,4-$ $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{C} \equiv \mathrm{CH})_{2}[21]$, and $4,4^{\prime}-\mathrm{HC} \equiv \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} \equiv \mathrm{CH}$ [20]. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}(\mathbf{1}), \mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-$ $\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-\mathrm{C} \equiv \mathrm{CH}$ (2) and $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-$ $\mathrm{C} \equiv \mathrm{C}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \quad(3), \quad\left\{\mathrm{R}=\mathrm{Ph}, \quad 4-\mathrm{PhC}_{6} \mathrm{H}_{4}\right.$, 4- $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 1-\mathrm{C}_{10} \mathrm{H}_{7}$ (1-naphthyl), 2- $\mathrm{C}_{10} \mathrm{H}_{7}$ (2-naphthyl), $9-\mathrm{C}_{14} \mathrm{H}_{9}$ (9-phenanthryl), $9-\mathrm{C}_{14} \mathrm{H}_{9}$ (9-anthryl), $3-\mathrm{C}_{16} \mathrm{H}_{9}$ (3-pyrenyl), 1- $\mathrm{C}_{20} \mathrm{H}_{11}$ (1-perylenyl), 2- $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$ (2-thienyl), $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Fe}$ (ferrocenyl)\} and H [22-24]. Other chemicals were purchased and used as received.

Unless it is stated otherwise, all reactions were carried out at room temperature in the dark under an atmosphere of nitrogen in dried and deoxygenated solvents. They were monitored by IR spectroscopy when necessary.

Infrared spectra were recorded on a Perkin-Elmer Paragon 1000 FTIR Spectrometer. UV-Vis spectra were recorded on a UNICAM UV2 spectrometer. NMR spectra were measured on a Jeol JNM-GX270 FT-NMR spectrometer or a Varian Unity Inova 500 MHz NMR spectrometer for $\mathbf{4 a}$ and 41 only. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported downfield from tetramethylsilane as internal standard with coupling constants in Hertz. Cyclic and square-wave voltammetry in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were performed using a three-electrode cell with a polished Pt 1 mm disk working electrode; $10^{-3} \mathrm{M}$ in electroactive material and 0.10 M in supporting electrolyte (TEAP or TBAPF $_{6}$). Data were recorded on a Powerlab/4sp computer-controlled potentiostat. Scan rates of $0.05-1 \mathrm{~V} \mathrm{~s}^{-1}$ were typically employed for cyclic voltammetry and for square-wave voltammetry, square-wave step heights of 5 mV , a square-amplitude of 25 mV with a frequency of 15 Hz . All potentials are referenced to decamethyl ferrocene; $E_{1 / 2}$ for sublimed ferrocene was 0.55 V . Elemental analyses were performed in the Microanalytical Laboratory, University College Dublin.

2.2. Reactions of $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-C \equiv C-R$ with tetracyanoquinodimethane (TCNQ)

TCNQ ($0.2 \mathrm{~g}, 1.02 \mathrm{mmol}$) was added to a solution of $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{R} \quad(1.02 \mathrm{mmol})$ in dichloro-
methane (30 mL). There was an immediate colour change from green or orange to red/purple. After 15 min the reaction mixture was chromatographed on silica using dichloromethane to elute the product in good yield. Removal of the solvent and recrystallisation of the residue from ace-tonitrile-ether mixtures gave dark crystals of $\mathrm{Ni}\left(\eta^{5}\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right]\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{R} \quad(4 \mathrm{a}-$ 1) where $\mathrm{R}=$ (a) $\mathrm{C}_{6} \mathrm{H}_{5}$, (b) $4-\mathrm{PhC}_{6} \mathrm{H}_{4}$, (c) $4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$, (d) $1-\mathrm{C}_{10} \mathrm{H}_{7}$ (1-naphthyl), (e) $2-\mathrm{C}_{10} \mathrm{H}_{7}$ (2-naphthyl), (f) $9-$ $\mathrm{C}_{14} \mathrm{H}_{9}$ (9-phenanthryl), (g) $9-\mathrm{C}_{14} \mathrm{H}_{9}$ (9-anthryl), (h) 3$\mathrm{C}_{16} \mathrm{H}_{9}$ (3-pyrenyl), (i) $1-\mathrm{C}_{20} \mathrm{H}_{11}$ (1-perylenyl), (j) $2-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$ (2-thienyl), (k) $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Fe}$ (ferrocenyl) and (l) H .

There was no reaction between TCNQ and 1,4-diethynylbenzene, phenylacetylene or ferrocenyl acetylene even after 2 h at $30^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { 2.2.1. } N i\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}- \\
& C\left\{=C(C N)_{2}\right\}-C_{6} H_{5}(\boldsymbol{4 a})
\end{aligned}
$$

Anal. Calc. for $\mathrm{C}_{43} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{NiP}$: C, 74.7; H, 4.2; $\mathrm{N}, 8.1$. Found: C, $74.6 ; \mathrm{H}, 4.2 ; \mathrm{N}, 8.0 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N})$ $2212\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2213(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right):$ $\delta 8.19\left[1 \mathrm{H}, \mathrm{br}, \mathrm{C}_{6} H_{4}\right], 6.7-7.7\left[24 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{6} H_{5}\right.$ and $\left.\mathrm{PPh}_{3}\right], 5.34\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right] .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 203.1$ (br), 184.5 (br), 156.2, 144.2, 143.2, 134.7, 133.6, 131.2, $130.9,129.4,128.8,128.6,127.6,123.7,120.3,115.0$, $114.8, \quad 113.4, \quad 113.3, \quad 95.8, \quad 73.6, \quad 69.3 . \quad \lambda_{\max } / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 478(18,400), 571$ (sh, 8,000$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 472$ (17100), $570($ sh, 8100$)$ in $\mathrm{CH}_{3} \mathrm{CN}$.

```
2.2.2. \(\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\)
\(C\left\{=C(C N)_{2}\right\}-C_{6} H_{4}-C_{6} H_{5}-4\) (4b)
```

Anal. Calc. for $\mathrm{C}_{49} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{NiP}: \mathrm{C}, 76.6 ; \mathrm{H}, 4.3 ; \mathrm{N}, 7.3$. Found: C, 76.5; H, 4.3; N, 7.3%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), $2212\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2223(\mathrm{sh}), 2213(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.61-8.49\left[28 \mathrm{H}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{6} H_{4} \mathrm{C}_{6} H_{5}\right.$ and $\left.\mathrm{PPh}_{3}\right], 5.35\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 182.5$, 155.3, 142.7, 142.1, 120.4 -135.0, 116.5, 116.2, 115.8, 95.9. $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 477$ (19400), 572 (sh, 10500) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 475(19000)$, 573 (sh, 10400) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.2.3. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-$ $C\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-4$ (4c)

Anal. Calc. for $\mathrm{C}_{45} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{NiP}: \mathrm{C}, 73.6 ; \mathrm{H}, 4.7 ; \mathrm{N}, 9.9$. Found: C, 73.7; H, 4.7; N, 9.9\%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N})$ $2212\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.69-7.43[23 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} H_{4}, \mathrm{C}_{6} H_{4}, \mathrm{PPh}_{3}\right], 5.33\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right], 2.90[6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NMe}_{2}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 182.5,155.3,142.7,142.1$, $120.4-135.0, \quad 116.5, \quad 116.2, \quad 115.8, \quad 95.9 . \quad \lambda_{\max } / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 477(19,400)$, 572 (sh, 10500$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 475$ (19000), 573 (sh, 10400) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.2.4. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PP}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-C_{10} H_{7}$ (4d) $\left(C_{10} H_{7}=1\right.$-naphthyl $)$

Anal. Calc. for $\mathrm{C}_{47} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{NiP}$: C, 76.1; $\mathrm{H}, 4.2 ; \mathrm{N}, 7.5$. Found: C, $76.1 ; \mathrm{H}, 4.2 ; \mathrm{N}, 7.5 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), $2122\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), $2113(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 6.22-7.92\left[26 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{10} H_{7}, \mathrm{PPh}_{3}\right], 5.37$
$\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 201.8[\mathrm{br}], 182.0,156.2$, 144.2, 143.8, 122.4-134.9, 115.0, 114.8, 113.5, 112.9, 95.9, 76.5, 70.0. $\lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 481$ (20600), 574 (sh, 10000) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 475$ (21700), 574 (sh, 10000) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.2.5. $\mathrm{Ni}\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-C_{10} H_{7}$ (4e) ($C_{10} H_{7}=2$-naphthyl)

Anal. Calc. for $\mathrm{C}_{47} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{NiP}: \mathrm{C}, 76.1 ; \mathrm{H}, 4.2 ; \mathrm{N}, 7.5$. Found: C, 76.1; H, 4.2; N, 7.5\%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), $2122\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), $2113(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.27-8.50\left[26 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{10} H_{7}, \mathrm{PPh}_{3}\right]$ $5.41\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right] .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ 183.1, 156.7, 144.1, 143.7, 121-135, 115.5, 115.4, 114.0, 113.9, 96.5, 77.3. $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 478(28,400), 571(\mathrm{sh}, 9400)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 472(28100), 570(\mathrm{sh}, 9300)$ in $\mathrm{CH}_{3} \mathrm{CN}$.

2.2.6. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(P \mathrm{Ph}_{3}\right)-C\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-$

 $C\left\{=C(C N)_{2}\right\}-C_{14} H_{9}(4 f)\left(C_{14} H_{9}=9\right.$-phenanthryl)Anal. Calc. for $\mathrm{C}_{51} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{NiP}: \mathrm{C}, 77.4 ; \mathrm{H}, 4.2 ; \mathrm{N}, 7.1$. Found: C, 77.4; H, 4.1; N, 7.0\%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N})$ $2122\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2113(\mathrm{KBr}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 8.24\left[1 \mathrm{H}, \mathrm{dd}, J=9.5,1.8 \mathrm{~Hz}, \mathrm{C}_{6} H_{4}\right], 7.22[1 \mathrm{H}, \mathrm{dd}$, $\left.J=9.6,1.8 \mathrm{~Hz}, \mathrm{C}_{6} H_{4}\right], 7.04[1 \mathrm{H}, \mathrm{dd}, J=9.8,1.3 \mathrm{~Hz}$, $\left.\mathrm{C}_{6} H_{4}\right], 6.97\left[1 \mathrm{H}, \mathrm{dd}, J=9.4,2.1 \mathrm{~Hz}, \mathrm{C}_{6} H_{4}\right], 7.0-8.9[9 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{14} H_{9}\right], 6.6-7.0\left[15 \mathrm{H}, \mathrm{m}, \mathrm{PPh}_{3}\right], 5.39\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right]$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 202.1[\mathrm{~d}, J=23 \mathrm{~Hz}], 182.5,155.0$, 141.6, 141.1, $121-135,115.5,114.1,113.5,96.2,70.3$. $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 475$ (15800), $576(\mathrm{sh}, 11000)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 475(15700), 575$ (sh, 11100$)$ in $\mathrm{CH}_{3} \mathrm{CN}$.

2.2.7. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-C\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-$

 $C\left\{=C(C N)_{2}\right\}-C_{14} H_{9}(4 g) \quad\left(C_{14} H_{9}=9\right.$-anthryl)Anal. Calc. for $\mathrm{C}_{51} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{NiP}$: C, 77.4; H, 4.2; N, 7.1. Found: C, 77.3; H, 4.2; N, 7.1\%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N})$ 2223 (sh), $2122\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), $2113(\mathrm{KBr})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.1-9.0\left[33 \mathrm{H}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{14} H_{9}, \mathrm{PPh}_{3}\right]$, $5.36\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 181.7,154.6$, $140.9,140.6,122.4-134.3,117.5,117.2,116.9,96.1 . \lambda_{\max } /$ $\mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 484$ (33000), 578 (sh, 18400) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 478$ (29000), 577 (sh, 18400) in $\mathrm{CH}_{3} \mathrm{CN}$.
2.2.8. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-C\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-$
$C\left\{=C(C N)_{2}\right\}-C_{16} H_{9}$ (4h) ($\mathrm{C}_{16} \mathrm{H}_{9}=3$-pyrenyl)
Anal. Calc. for $\mathrm{C}_{53} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{NiP}: \mathrm{C}, 78.1 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.9$. Found: C, $78.0 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.9 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N})$ $2122\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2113(\mathrm{KBr}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: δ 6.97-7.98 [35H, m, $\left.\mathrm{C}_{6} H_{4}, \mathrm{C}_{16} H_{9}, \mathrm{PPh}_{3}\right] 5.40[5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 183.5,156.8,144.4,121.5-$ $134.8, \quad 115.6, \quad 115.5,114.2, \quad 95.9 \quad\left[\mathrm{~s}, C_{5} \mathrm{H}_{5}\right] . \lambda_{\max } / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 475$ (23000), 576 (sh, 10300) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 472(22500), 577$ (sh, 10200) in $\mathrm{CH}_{3} \mathrm{CN}$.
2.2.9. $N i\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$
$C\left\{=C(C N)_{2}\right\}-C_{20} H_{11} \quad(4 i)\left(C_{20} H_{11}=3\right.$-perylenyl $)$

Anal. Calc. for $\mathrm{C}_{57} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{NiP}: \mathrm{C}, 79.1 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.5$. Found: C, $79.0 ; \mathrm{H}, 4.0 ; \mathrm{N}, 6.4 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N})$

2222 (sh), $2122\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), $2113(\mathrm{KBr})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.34[1 \mathrm{H}, \mathrm{dd}, J=9.4,1.8 \mathrm{~Hz}$, $\left.\mathrm{C}_{6} H_{4}\right], 6.1-8.51\left[28 \mathrm{H}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{20} H_{11}, \mathrm{PPh}_{3}\right], 5.38[5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} H_{5}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 181.7,153.6,143.9,122.3-$ 134.9, 116.9, 115.8, 115.2, 96.1. $\lambda_{\max } / \mathrm{nm} \quad(\varepsilon /$ $\left.\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 470$ (30900), 578 (sh, 9500) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; 460 (30000), 578 (sh, 9400) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.2.10. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(P \mathrm{Ph}_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-C_{4} H_{3} S(4 j)\left(C_{4} H_{3} S=2\right.$-thiophenyl)

Anal. Calc. for $\mathrm{C}_{41} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{NiPS}: \mathrm{C}, 70.6 ; \mathrm{H}, 3.9 ; \mathrm{N}, 8.0$. Found: C, 70.6; H, 3.8; N, 8.1\%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N})$ $2212\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2213(\mathrm{KBr}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 5.81-8.43\left[22 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{4} H_{3} \mathrm{~S}, \mathrm{PPh}_{3}\right], 5.35[5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 180.6,151.2,141.6,116.3-$ $136.4\left[\mathrm{~m}, C_{6} \mathrm{H}_{4}, C_{4} \mathrm{H}_{3} \mathrm{~S}, \mathrm{PPh}_{3}\right], 116.5,116.2,115.8,95.9$ [s, $\left.C_{5} \mathrm{H}_{5}\right] . \lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 477$ (23400), 573 (sh, 18400) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 475$ (23400), 573 (sh, 18400) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.2.11. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(P \mathrm{Ph}_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$ $C\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \quad(4 \boldsymbol{k})$

Anal. Calc. for $\mathrm{C}_{47} \mathrm{H}_{33} \mathrm{FeN}_{4} \mathrm{NiP}: \mathrm{C}, 70.6 ; \mathrm{H}, 4.1 ; \mathrm{N}, 7.0$. Found: C, $71.0 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.9 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N}) 2210$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.24[1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}$, $\left.\mathrm{C}_{6} H_{4}\right], 7.21\left[{ }^{1} \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{C}_{6} H_{4}\right], 7.03 \quad[1 \mathrm{H}, \mathrm{d}$, $\left.J=9.0 \mathrm{~Hz}, \mathrm{C}_{6} H_{4}\right], 6.93\left[1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{C}_{6} H_{4}\right], 7.3-7.8$ $\left[15 \mathrm{H}, \mathrm{m}, \mathrm{PPh}_{3}\right], 5.21\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}(\mathrm{Ni})\right], 4.92[5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{Fe})\right], 4.7$ and $5.2\left[4 \mathrm{H}\right.$, both broad, $\left.\mathrm{C}_{5} H_{4}(\mathrm{Fe})\right] . \lambda_{\text {max }} /$ $\mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 475(25,500), 573$ ($\mathrm{sh}, 18400$), $630(10000)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

2.2.12. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(P \mathrm{Ph}_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-H(4 \boldsymbol{l})$

Anal. Calc. for $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{NiP}: \mathrm{C}, 72.2 ; \mathrm{H}, 4.1 ; \mathrm{N}, 9.1$. Found: C, 71.9; H, 4.2; N, 9.3\%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N})$ 2224 (sh), $2211\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2226$ (sh), 2209, $(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.78[1, \mathrm{dd}, J=9.4,1.8 \mathrm{~Hz}$, $\left.\mathrm{C}_{6} H_{4}\right], 7.2-7.77\left[15 \mathrm{H}, \mathrm{m}, \mathrm{PPh}_{3}\right], 7.07\left[1 \mathrm{H}, \mathrm{s}, \mathrm{CHC}(\mathrm{CN})_{2}\right]$, $7.06\left[1, \mathrm{dd}, J=9.4,1.8 \mathrm{~Hz}, \mathrm{C}_{6} H_{4}\right], 6.79[1, \mathrm{dd}, J=9.4$, $1.3 \mathrm{~Hz}, \mathrm{C}_{6} H_{4}$], 6.58 [1, dd, $\left.J=9.4,1.3 \mathrm{~Hz}, \mathrm{C}_{6} H_{4}\right], 5.34$ $\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right] .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 201.3 \quad[\mathrm{C}(5), \mathrm{d}$, $J=26 \mathrm{~Hz}], 161.3[C(4)], 156.2[C(9)], 143.0[C(6)], 141.7$ [C(11)], $129.6[C(7)], 124.5[C(10)], 120.1[C(8)], 133.4[\mathrm{~d}$, $\left.J=11 \mathrm{~Hz}, o \mathrm{Ph}_{3} \mathrm{P}\right], 131.6\left[\mathrm{~s}, p \mathrm{Ph}_{3} \mathrm{P}\right], 130.1[\mathrm{~d}, J=49 \mathrm{~Hz}$, ipso $\mathrm{Ph}_{3} \mathrm{P}$], 128.9 [d, $J=10.8 \mathrm{~Hz}, m \mathrm{Ph}_{3} \mathrm{P}$], 114.8, 114.7, 114.4, 112.7, 94.9 [s, $C_{5} \mathrm{H}_{5}$], 70.7, 69.6 [both s, $C(3) /$ $C(12)] . \lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 462$ (28000), 533 (sh, $17000)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 462$ (27000), 525 (sh, 19000) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.3. Reactions of $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-\mathrm{C} \equiv \mathrm{CH}$ with TCNQ

These were carried out as above using equimolar amounts of TCNQ $(0.04 \mathrm{~g}, \quad 0.19 \mathrm{mmol})$ and $\left[\mathrm{Ni}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-\mathrm{C} \equiv \mathrm{CH}\right] \quad(0.19 \mathrm{mmol}) . \quad \mathrm{Ni}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{X}-$
$\mathrm{C} \equiv \mathrm{CH}(5 \mathbf{a}-\mathrm{d})\left\{\mathrm{X}=(\mathrm{a})\right.$ nothing, (b) $1,4-\mathrm{C}_{6} \mathrm{H}_{4}$, (c) 1,3$\mathrm{C}_{6} \mathrm{H}_{4}$ and (d) $\left.4,4^{\prime}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right\}$, were obtained in good yield. They did not react further with a large excess of TCNQ.

2.3.1. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(P \mathrm{Ph}_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-C \equiv C-H(5 a)$

Anal. Calc. for $\mathrm{C}_{39} \mathrm{H}_{25} \mathrm{NiN}_{4} \mathrm{P}: \mathrm{C}, 73.2 ; \mathrm{H}, 3.9 ; \mathrm{N}, 8.8$. Found: C, $73.1 ; \mathrm{H}, 3.9 ; \mathrm{N}, 8.6 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{C})$ 2096, $v(\mathrm{C} \equiv \mathrm{N}) 2212$, $v(\mathrm{CC}-\mathrm{H}) 3300\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{C})$ 2095, v($\mathrm{C} \equiv \mathrm{N}) 2213, \quad v(\mathrm{CC}-\mathrm{H}) 3300(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.89-7.81\left[19 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.\mathrm{PPh}_{3}\right], 5.24[5 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}_{5} H_{5}\right], 1.70[1 \mathrm{H}, \mathrm{s}, \mathrm{CC}-H] . \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ 475 (27200), 571 (sh, 8000) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 472$ (30500), 570 (sh, 8100) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.3.2. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(P \mathrm{Ph}_{3}\right)-C\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-\left(1,4-C_{6} H_{4}\right)-C \equiv C-H(5 b)$

Anal. Calc. for $\mathrm{C}_{45} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{NiP}: \mathrm{C}, 75.5 ; \mathrm{H}, 4.1 ; \mathrm{N}, 7.8$. Found: C, $75.4 ; \mathrm{H}, 4.0 ; \mathrm{N}, 7.8 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{C})$ 2095, $v(\mathrm{C} \equiv \mathrm{N}) 2222$ (sh), 2212, $v(\mathrm{CC}-\mathrm{H}) 3300\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v(\mathrm{C} \equiv \mathrm{C}) 2096, v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), 2213, $v(\mathrm{CC}-\mathrm{H}) 3300$ $(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.12-7.81\left[23 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, $\mathrm{C}_{6} \mathrm{H}_{4}$ and $\left.\mathrm{PPh}_{3}\right], 5.23\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right], 1.62[1 \mathrm{H}, \mathrm{s}, \mathrm{C} \equiv \mathrm{C}-$ $H] . \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 470$ (32400), $562(\mathrm{sh}$, 9800) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 471$ (31700), 560 (sh, 10100) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.3.3. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-\left(1,3-C_{6} H_{4}\right)-C \equiv C-H(5 c)$

Anal. Calc. for $\mathrm{C}_{45} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{NiP}: \mathrm{C}, 75.5 ; \mathrm{H}, 4.1 ; \mathrm{N}, 7.8$. Found: C, 75.6; H, 4.1; N, 7.9\%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{C})$ 2096, $v(\mathrm{C} \equiv \mathrm{N}) 2222$ (sh), 2212, $v(\mathrm{CC}-\mathrm{H}) 3300\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v(\mathrm{C} \equiv \mathrm{C}) 2223$ (sh), 2095, $v(\mathrm{C} \equiv \mathrm{N}) 2213, ~ v(\mathrm{CC}-\mathrm{H}) 3300$ $(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.8-8.8\left[23 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}\right.$, $\mathrm{C}_{6} H_{4}$ and $\left.\mathrm{PPh}_{3}\right], 5.22\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right], 1.61[1 \mathrm{H}, \mathrm{s}, \mathrm{CC}-H]$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 201.1$ [br], 156.1, 144.2, 143.0, 120135, 114.9, 114.8, 113.2, 112.9, 95.9, 82.3, 79.7, 77.3. $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 473$ (18900), $560(\mathrm{sh}, 10000)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 480(17800), 562$ (sh, 9000) in $\mathrm{CH}_{3} \mathrm{CN}$.

$$
\begin{aligned}
& \text { 2.3.4. } \mathrm{Ni}\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}- \\
& C\left\{=C(C N)_{2}\right\}-\left(4,4^{\prime}-C_{6} H_{4}-C_{6} H_{4}\right)-C \equiv C-H(5 \boldsymbol{d})
\end{aligned}
$$

Anal. Calc. for $\mathrm{C}_{51} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{NiP}: \mathrm{C}, 77.6 ; \mathrm{H}, 4.2 ; \mathrm{N}, 7.1$. Found: C, $77.3 ; \mathrm{H}, 4.2 ; \mathrm{N}, 7.0 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{C})$ 2096, $v(\mathrm{C} \equiv \mathrm{N}) 2212, v(\mathrm{CC}-\mathrm{H}) 3300\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{C})$ 2095, $v(\mathrm{C} \equiv \mathrm{N})$ 2213, $v(\mathrm{CC}-\mathrm{H}) 3300(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.86-7.93\left[27 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{6} H_{4} \mathrm{C}_{6} H_{4}\right.$, and $\left.\mathrm{PPh}_{3}\right], 5.26\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right], 1.53[1 \mathrm{H}, \mathrm{s}, \mathrm{C} \equiv \mathrm{C}-H] . \lambda_{\max } / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 472$ (29800) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 470$ (30300) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.4. The reactions of $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-$ $C \equiv C-N i\left(\eta^{5}-C_{5} H_{5}\right)\left(P \mathrm{Ph}_{3}\right)$ with $T C N Q$

When these were carried out as above with equimolar amounts of TCNQ $(0.04 \mathrm{~g}, \quad 0.19 \mathrm{mmol})$ and $\mathrm{Ni}\left(\eta^{5}-\right.$
$\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)(0.19 \mathrm{mmol})$, $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-$ $\mathrm{X}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)(\mathbf{6 a - d})$, were obtained.

With a $2: 1$ molar ratio of TCNQ $(0.02 \mathrm{~g}, 0.11 \mathrm{mmol})$ and $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)$ $(0.055 \mathrm{mmol})$, the products were $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-$ $\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{X}-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\right.$ $\mathrm{C}(\mathrm{CN})_{2}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)(7 \mathbf{a}-\mathbf{d})$.

2.4.1. $\mathrm{Ni}\left(\eta^{5}-C_{5} H_{5}\right)\left(P \mathrm{Ph}_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-C \equiv C-N i\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right) \quad(6 \boldsymbol{a})$

Anal. Calc. for $\mathrm{C}_{62} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{Ni}_{2} \mathrm{P}_{2}$: C, 72.7; H, 4.3; N, 5.5. Found: C, $72.5 ; \mathrm{H}, 4.3 ; \mathrm{N}, 5.4 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{C}) 2095$, $v(\mathrm{C} \equiv \mathrm{N}) 2212\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{C}) 2095, v(\mathrm{C} \equiv \mathrm{N}) 2213$ (KBr). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.91-7.87\left[34 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}\right.$, and $\left.\mathrm{PPh}_{3}\right], 5.23\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right], 5.22\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right] . \lambda_{\max } /$ $\mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 476$ (32100) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 473$ (34900), in $\mathrm{CH}_{3} \mathrm{CN}$.

2.4.2. $\mathrm{Ni}\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-\left(1,4-C_{6} H_{4}\right)-C \equiv C-N i\left(\eta^{5}-C_{5} H_{5}\right)\left(P \mathrm{Ph}_{3}\right)$ (6b)

Anal. Calc. for $\mathrm{C}_{68} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{Ni}_{2} \mathrm{P}_{2}$: C, 74.2; $\mathrm{H}, 4.4 ; \mathrm{N}, 5.1$. Found: C, 74.2; H, 4.3; N, 5.0\%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{C}) 2092$, $v(\mathrm{C} \equiv \mathrm{N}) 2212\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{C}) 2093, v(\mathrm{C} \equiv \mathrm{N}) 2213$ (KBr). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.85-8.05\left[38 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}\right.$, $\mathrm{C}_{6} H_{4}$ and $\left.\mathrm{PPh}_{3}\right], 5.26\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right], 5.24\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right]$. $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 472(28200), 556(\mathrm{sh}, 9500)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 472$ (26500), 554 (sh, 9000) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.4.3. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-$
 $C\left\{=C(C N)_{2}\right\}-\left(1,3-C_{6} H_{4}\right)-C \equiv C-N i\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)$ (6c)

Anal. Calc. for $\mathrm{C}_{68} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{Ni}_{2} \mathrm{P}_{2}$: C, 74.2; $\mathrm{H}, 4.4 ; \mathrm{N}, 5.1$. Found: C, 74.2; H, 4.3; N, 5.0\%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{C}) 2094$, $v(\mathrm{C} \equiv \mathrm{N}) 2222(\mathrm{sh}), 2212\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{C}) 2094, v(\mathrm{C} \equiv \mathrm{N})$ 2223 (sh), 2213 (KBr). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.64-7.85$ [$38 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{6} H_{4}$ and PPh_{3}], 5.26 [$5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}$], 5.25 $\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right] . \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 476$ (45000), 563 (sh, 20000) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 473$ (45000), 557 (sh, 21000) in $\mathrm{CH}_{3} \mathrm{CN}$.

2.4.4. $\mathrm{Ni}\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-\left(4,4^{\prime}-C_{6} H_{4}-C_{6} H_{4}\right)-C \equiv C-N i\left(\eta^{5}-C_{5} H_{5}\right)$ (PPh_{3}) ($\mathbf{6} \boldsymbol{d}$)

Anal. Calc. for $\mathrm{C}_{74} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{Ni}_{2} \mathrm{P}_{2}$: C, $75.5 ; \mathrm{H}, 4.4 ; \mathrm{N}, 4.7$. Found: C, $75.6 ; \mathrm{H}, 4.5 ; \mathrm{N}, 4.7 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{C}) 2094$, $v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), $2212\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{C}) 2094, v(\mathrm{C} \equiv \mathrm{N})$ 2223 (sh), 2213 (KBr). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.92-8.13$ [$42 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{6} H_{4} \mathrm{C}_{6} H_{4}$, and PPh_{3}], 5.24 [$5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right], 5.21\left[5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 155.6$, $144.8,142.3,120-135,115.0,113.6,95.9,92.8$. $\lambda_{\max } / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 474$ (40200) 555 (sh, 17900) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 471$ (35900), 556 (sh, 16000) in $\mathrm{CH}_{3} \mathrm{CN}$.
2.4.5. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-$
$C\left\{=C(C N)_{2}\right\}-C\left\{=C(C N)_{2}\right\}-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$ $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)$ (7a)

Anal. Calc. for $\mathrm{C}_{74} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{P}_{2}$: C, 72.3; $\mathrm{H}, 3.9 ; \mathrm{N}, 9.1$. Found: C, $72.3 ; \mathrm{H}, 3.9 ; \mathrm{N}, 9.0 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N}) 2222$ (sh), $2212\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), $2212(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.95-8.02\left[38 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}\right.$, and $\left.\mathrm{PPh}_{3}\right]$, $5.20\left[10 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right] . \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 472$ $(36,500) 551$ (sh, 16900) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 472$ (34400), 550 (sh, $15100)$ in $\mathrm{CH}_{3} \mathrm{CN}$.

$$
\begin{aligned}
& \text { 2.4.6. Ni(} \left.\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}- \\
& C\left\{=C(C N)_{2}\right\}-\left(1,4-C_{6} H_{4}\right)-C\left\{=C(C N)_{2}\right\}- \\
& C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-N i\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)(7 \boldsymbol{b})
\end{aligned}
$$

Anal. Calc. for $\mathrm{C}_{80} \mathrm{H}_{52} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{P}_{2}$: C, 73.6; H, 4.0; N, 8.6. Found: C, 73.5 ; H, $4.1 ; \mathrm{N}, 8.6 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N}) 2222$ (sh), $2212\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2223$ (sh), $2213(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.91-7.90\left[42 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, and $\left.\mathrm{PPh}_{3}\right], 5.25\left[10 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 140.6$, $144.3,162.1,121-135,115.4,115.3,114.0,96.5 . \lambda_{\max } / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 475(25200) 562(\mathrm{sh}, 11000)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 478$ (25900), 553 (sh, 10600) in $\mathrm{CH}_{3} \mathrm{CN}$.

$$
\begin{aligned}
& \text { 2.4.7. } \mathrm{Ni}\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}- \\
& C\left\{=C(C N)_{2}\right\}-\left(1,3-C_{6} H_{4}\right)-C\left\{=C(C N)_{2}\right\}- \\
& C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-N i\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right)(7 c)
\end{aligned}
$$

Anal. Calc. for $\mathrm{C}_{80} \mathrm{H}_{52} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{P}_{2}$: C, 73.6; H, 4.0; N, 8.6. Found: C, $73.7 ; \mathrm{H}, 4.0 ; \mathrm{N}, 8.5 \%$. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N}) 2212$
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2213(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.77-$ $8.02\left[42 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{6} H_{4}\right.$, and $\left.\mathrm{PPh}_{3}\right], 5.26\left[10 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} H_{5}\right]$. $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 473$ (42200) 555 ($\mathrm{sh}, 19000$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 473$ (43000), 553 (sh, 19600) in $\mathrm{CH}_{3} \mathrm{CN}$.
2.4.8. $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-$ $C\left\{=C(C N)_{2}\right\}-\left(4,4^{\prime}-C_{6} H_{4}-C_{6} H_{4}\right)-C\left\{=C(C N)_{2}\right\}-$ $C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-N i\left(\eta^{5}-C_{5} H_{5}\right)\left(P P h_{3}\right) \quad(7 \boldsymbol{d})$

Anal. Calc. for $\mathrm{C}_{86} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{Ni}_{2} \mathrm{P}_{2}$: C, 74.8; H, 4.1; N, 8.1. Found: C, 74.8; H, 4.1; N, 8.1\%. IR $v / \mathrm{cm}^{-1}: v(\mathrm{C} \equiv \mathrm{N}) 2212$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C} \equiv \mathrm{N}) 2213(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.84-$ $7.96\left[46 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{4}, \mathrm{C}_{6} H_{4} \mathrm{C}_{6} H_{4}\right.$, and $\left.\mathrm{PPh}_{3}\right], 5.20[10 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 202.4[\mathrm{~d}, J=25 \mathrm{~Hz}], 156.8$, 144.9, 143.6, 121-134, 115.5, 115.4, 114.1, 114.0, 96.7, 69.95. $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 477$ (30400) 562 (sh, $12000)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 474$ (29800), 553 (sh, 13200) in $\mathrm{CH}_{3} \mathrm{CN}$.
2.5. Crystal structure determinations of $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\left.\left(\mathrm{PPh}_{3}\right)-C\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-C\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}_{6} \mathrm{H}_{5}\right\}$
(4a), Ni $\left(\eta^{5}-C_{5} H_{5}\right)\left(P h_{3}\right)-C\left\{=C_{6} H_{4}=C(C N)_{2}\right\}-$
$\left.C\left\{=C(C N)_{2}\right\}-C_{6} H_{4}-C_{6} H_{5}-4\right\} \quad(4 \boldsymbol{b})$ and $\mathrm{Ni}\left(\eta^{5}-C_{5} H_{5}\right)$
$\left(\mathrm{PPh}_{3}\right)-C\left\{=C_{6} \mathrm{H}_{4}=C(C N)_{2}\right\}-C\left\{=C(C N)_{2}\right\}-$
H.0.5 $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}(4 \boldsymbol{l})$

Crystals of $\mathbf{4 a}$ (black blocks), $\mathbf{4 b}$ (black plates) and $4 \mathbf{I} \cdot 0.5\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ (purple plates) were grown from acetonitrile/ether. Data were collected for $\mathbf{4 a}$ and $\mathbf{4 l}$ at 88(2) K on a Bruker apexii CCD diffractometer and for 4b at

Table 1
Crystal data for $\operatorname{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}_{6} \mathrm{H}_{5} \quad(\mathbf{4 a})$, $\quad \mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}_{6} \mathrm{H}_{4}-$ $\mathrm{C}_{6} \mathrm{H}_{5}-4,4 \mathbf{b}$, and $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{H} \cdot 1 / 2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}, 4 \mathbf{1} \cdot 1 / 2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$

Compound	4a	4b	4I $\cdot 1 / 2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$
Chemical formula	$\mathrm{C}_{43} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{NiP}$	$\mathrm{C}_{49} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{NiP}$	$\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{0.5} \mathrm{NiP}$
Formula weight	691.38	767.47	652.35
T (K)	90(2)	163(2)	90(2)
$\lambda(\mathrm{A})$	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P 2_{1} / n$	Pca2(1)	C2/c
$a(\mathrm{~A})$	10.3756(8)	26.263(9)	13.4239(3)
b (${ }_{\text {® }}$)	10.1379(8)	11.347(4)	22.6219(6)
$c(\mathrm{~A})$	32.667(2)	26.306(9)	21.9641(5)
$\alpha\left({ }^{\circ}\right)$	90	90	90
$\beta\left({ }^{\circ}\right)$	98.225(5)	90	95.641(1)
$\gamma\left({ }^{\circ}\right)$	90	90	90
$V\left(\AA^{3}\right)$	3400.8(5)	7839(5)	6637.6(3)
Z	4	8	8
$D_{\text {calc }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.350	1.301	1.306
$\mu\left(\mathrm{mm}^{-1}\right)$	0.655	0.576	0.668
Transmission factors ($T_{\min }, T_{\max }$)	0.981, 0.711	0.960, 0.877	$0.980,0.902$
Reflections collected	20995	96160	68746
Independent reflections [$R_{\text {int }}$]	6670 [0.0866]	15876 [0.0697]	9342 [0.0531]
Observed reflections $I>2 \sigma(I)$	4667	11363	6760
$\theta_{\text {max }}\left({ }^{\circ}\right.$)	26.26	26.43	31.02
Final R indices ${ }^{\text {a }}[I>2 \sigma(I)]$	$R_{1}=0.0800, w R_{2}=0.2038$	$R_{1}=0.0339, w R_{2}=0.0642$	$R_{1}=0.0412, w R_{2}=0.1139$
R indices (all data) ${ }^{\text {a }}$	$R_{1}=0.1113, w R_{2}=0.2184$	$R_{1}=0.0594, w R_{2}=0.0689$	$R_{1}=0.0642, w R_{2}=0.1238$
Largest difference in peak and hole (e \AA^{-3})	2.300 and -0.591	0.703 and -0.279	1.061and -0.827

${ }^{\mathrm{a}} w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0944 P)^{2}+10.5457 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \quad$ for $\quad \mathbf{4 a} ; \quad w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0327 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \quad$ for $\quad \mathbf{4 b} ;$ $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0710 P)^{2}+1.0322 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$ for $\mathbf{4 l} \cdot 1 / 2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$.

Fig. 1. The molecular structure and atom labelling of $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}_{6} \mathrm{H}_{5}$ (4a). For clarity, only two C atoms of the consecutively numbered cyclopentadienyl and phenyl rings are labelled.

Fig. 2. The molecular structure and atom labelling of Molecule 1 of $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{5}-4(\mathbf{4 b})$. For clarity, only two C atoms of the consecutively numbered cyclopentadienyl and phenyl rings are labelled.

163(2) K on a Bruker smart CCD diffractometer. Data was collected using smart [25] or apexii [26] and processed using sAINT [27]; empirical absorption corrections were applied using sadabs [28]. Crystal data for all three compounds are summarised in Table 1.

The structures of $\mathbf{4 a}$ and $\mathbf{4 b}$ were solved using shelxs [29] and that of 41 using $\operatorname{SIR} 92$ [30] and were refined by full-matrix least-squares on F^{2} using SHELXL-97 [31] and titan2000 [32]. All non-hydrogen atoms were assigned anisotropic temperature factors, with hydrogen atoms included in calculated positions. Crystals of $4 \mathbf{a}$ were weakly diffracting which led to a poorer quality data set and relatively high values of R_{int} and R_{1}. For $\mathbf{4 b}$, the correct choice of absolute structure was confirmed by refinement of the Flack parameter [0.008(8)] [33]. For 41, a difference Fourier synthesis following the location of all non-hydrogen atoms revealed three substantial peaks that could be readily assigned to a diethyl ether solvate molecule in the crystal lattice with the O atom located on a two-fold axis. Anisotropic refinement of this solvate with H atoms included using a riding model led to a significant improvement in R_{1}. The structure of $\mathbf{4 a}$ together with the atom labelling is illustrated in Fig. 1, and those of molecule A of $\mathbf{4 b}$ and 41 in Figs. 2 and 3, respectively. Selected bond lengths and angles are listed in Table 2.

3. Results and discussion

The σ-alkynyl complexes $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$ (1) $\left\{\mathrm{R}=\right.$ (a) $\mathrm{C}_{6} \mathrm{H}_{5}$, (b) $4-\mathrm{PhC}_{6} \mathrm{H}_{4}$, (c) $4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$, (d) 1$\mathrm{C}_{10} \mathrm{H}_{7}$ (1-naphthyl), (e) $2-\mathrm{C}_{10} \mathrm{H}_{7}$ (2-naphthyl), (f) $9-\mathrm{C}_{14} \mathrm{H}_{9}$ (9-phenanthryl), (g) $9-\mathrm{C}_{14} \mathrm{H}_{9}$ (9-anthryl), (h) $3-\mathrm{C}_{16} \mathrm{H}_{9}$ (3-pyrenyl), (i) 1- $\mathrm{C}_{20} \mathrm{H}_{11}$ (1-perylenyl), (j) 2- $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$ (2-thienyl), (k) $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Fe}$ (ferrocenyl), (l) H$\}, \mathrm{Ni}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-$ $\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-\mathrm{C} \equiv \mathrm{CH}$ (2) and $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}-\mathrm{X}-$ $\mathrm{C} \equiv \mathrm{C}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \quad$ (3), $\quad\{\mathrm{X}=$ (a) nothing, (b) $1,4-\mathrm{C}_{6} \mathrm{H}_{4}$, (c) $1,3-\mathrm{C}_{6} \mathrm{H}_{4}$ and (d) $\left.4,4^{\prime}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right\}$ react with 7,7,8,8-tetracyanoquinodimethane, TCNQ, at $30^{\circ} \mathrm{C}$ by insertion of the alkyne $\mathrm{C} \equiv \mathrm{C}$ into a $\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ bond of TCNQ. 1 and 2 give $1: 1$ adducts $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-$ $\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{R}(4)$ and $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{X}-\mathrm{C} \equiv \mathrm{CH}$ (5), respectively, whilst 3 give $1: 1$ adducts $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{X}-\mathrm{C} \equiv$ $\mathrm{C}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)(6)$ and $1: 2$ adducts $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{X}-\mathrm{C}\{=$ $\left.\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \quad$ (7) depending on the mole ratio of reactants (Scheme 1). These intensely coloured solids are air-stable. They decompose above ca. $150{ }^{\circ} \mathrm{C}$ on heating. They are soluble in polar organic solvents, but their red-purple solutions decompose

Fig. 3. The molecular structure and atom labelling $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{H}(4 \mathrm{I})$. For clarity, only two C atoms of the consecutively numbered cyclopentadienyl and phenyl rings are labelled.

Table 2
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)$ $\mathrm{C}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{CN})_{2}\right\} \mathrm{C}\left\{\mathrm{C}(\mathrm{CN})_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{5}(\mathbf{4 a}), \mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{C}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{CN})_{2}\right\}-$ $\mathrm{C}\left\{\mathrm{C}(\mathrm{CN})_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{5}-4(\mathbf{4 b})$ (molecule A only; molecule B is very similar) and $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{C}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{CN})_{2}\right\} \mathrm{C}\left\{\mathrm{C}(\mathrm{CN})_{2}\right\} \mathrm{H} \cdot 1 / 2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O} \quad$ (4I). $1 / 2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$

	4a	4b (molecule A)	41-1/2($\left.\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$
Coordination about Ni			
$\mathrm{Ni}(1)-\mathrm{P}(1)$	2.1818(15)	2.1960(10)	2.1536(5)
$\mathrm{Ni}(1)-\mathrm{C}(5)$	1.1912(5)	1.911(3)	1.8798(18)
$\mathrm{Ni}(1)-\mathrm{C}(21)$	$2.135(6)$	2.113(3)	2.142(2)
$\mathrm{Ni}(1)-\mathrm{C}(22)$	2.094(6)	2.194(3)	2.1019(19)
$\mathrm{Ni}(1)-\mathrm{C}(23)$	2.164(5)	2.137(4)	2.152(2)
$\mathrm{Ni}(1)-\mathrm{C}(24)$	$2.136(5)$	2.122(3)	2.080(2)
$\mathrm{Ni}(1)-\mathrm{C}(25)$	$2.109(6)$	2.151(3)	2.130(2)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.403(9)	1.421(4)	1.442 (3)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.434(8)	$1.388(5)$	1.409 (3)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.388(8)	$1.456(5)$	1.397(3)
$\mathrm{C}(24)-\mathrm{C}(25)$	1.455 (8	1.472(4)	1.438 (3)
$\mathrm{C}(21)-\mathrm{C}(25)$	$1.395(9)$	1.418(4)	1.376 (3)
$\mathrm{P}(1)-\mathrm{Ni}(1)-\mathrm{C}(5)$	100.29(16)	98.98(9)	97.66(6)
$\mathrm{C}=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}$, fragment			
$\mathrm{C}(5)-\mathrm{C}(6)$	1.367(7)	1.391(4)	1.375(3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.449 (7)	1.448(4)	1.447 (3)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.350(7)$	1.357(4)	1.353(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.435(7)	$1.435(5)$	1.430 (3)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.441(7)	1.446 (5)	1.440 (3)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.349(8)	$1.355(5)$	1.349 (3)
$\mathrm{C}(6)-\mathrm{C}(11)$	$1.445(7)$	1.457(4)	1.439 (3)
$\mathrm{C}(9)-\mathrm{C}(12)$	1.392(7)	1.385(5)	1.386(3)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.434(8)	$1.427(5)$	1.426 (3)
$\mathrm{C}(12)-\mathrm{C}(14)$	1.429 (8)	$1.445(5)$	$1.424(3)$
$\mathrm{C}(13)-\mathrm{N}(13)$	1.146(7)	1.161(5)	$1.146(3)$
$\mathrm{C}(14)-\mathrm{N}(14)$	1.161(7)	1.142(4)	1.153(3)
$\mathrm{Ni}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	113.5(4)	112.7(2)	105.13(13)
$\mathrm{Ni}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	120.6(5)	126.4(2)	130.46(14)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.0(5)	120.9(3)	124.16(17)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	124.3(5)	123.3(3)	122.34(17)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	122.5(5)	121.7(3)	121.84(18)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.4(5)	121.9(3)	121.07(18)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	117.1(5)	116.7(3)	117.79(17)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121.1(5)	122.1(3)	120.88(17)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	122.8(5)	121.1(4)	122.19(17)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(12)$	122.4(5)	121.9(3)	120.94(17)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(12)$	120.4(5)	121.4(3)	121.27(18)
$\mathrm{C}(9)-\mathrm{C}(12)-\mathrm{C}(13)$	123.2(5)	123.0(3)	120.95(13)
$\mathrm{C}(9)-\mathrm{C}(12)-\mathrm{C}(14)$	120.0(5)	121.1(3)	122.06(18)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(14)$	116.7(5)	115.8(3)	116.99(18)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(13)$	178.9(6)	179.0(4)	179.3(3)
$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{N}(14)$	177.1(6)	179.1(4)	179.6(3)
$C=C(C N)_{2}$ fragment			
$\mathrm{C}(3)-\mathrm{C}(4)$	1.361(8)	1.353(4)	1.363 (3)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.472(7)$	1.478(4)	1.441(3)
$\mathrm{C}(4)-\mathrm{C}(61)$	$1.497(7)$	1.494(4)	
$\mathrm{C}(1)-\mathrm{C}(3)$	1.450 (8)	$1.444(5)$	1.434(3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.442(8)	1.440(4)	$1.438(3)$
$\mathrm{C}(1)-\mathrm{N}(1)$	1.149(7)	1.142(4)	$1.136(3)$
$\mathrm{C}(2)-\mathrm{N}(2)$	1.152(7)	1.142(4)	1.144(3))
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	122.6(5)	120.3(3)	124.55(17)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(61)$	119.1(5)	119.8(2)	
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(61)$	118.4(5)	119.8(3)	
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	121.4(5)	122.6(3)	120.79(17)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.0(5)	122.6(3)	122.46(18)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	117.6(5)	114.8(3)	116.73(16)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	179.0(6)	178.1(4)	179.3(2)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	179.4(6)	177.7(4)	176.9(2)

slowly. Consequently, although the reactions which form 3-7 appear to be close to quantitative, purification results in loss of product and the yields of the pure compound are lower but always $>80 \%$.

3.1. Structures of $\mathbf{4 a}, \boldsymbol{4} \boldsymbol{b}$ (molecule A) and $\boldsymbol{4 l}$

The spectroscopic data discussed below does not allow the molecular structures of 4-7 to be deduced unambiguously, although it does confirm that all have similar structures. Consequently the structures of three were determined by X-ray crystallography, 4a $(\mathrm{R}=\mathrm{Ph}), \mathbf{4 b}(\mathrm{R}=4-\mathrm{Ph}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $4 \mathrm{l}(\mathrm{R}=\mathrm{H})$. The molecular structures and atom labelling of $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 l}$ are illustrated in Figs. 1-3, respectively, whilst selected bond lengths and angles are summarised in Table 2. In the discussion that follows $\mathbf{4 a}$ will be used as the generic example for the aryl derivatives as its structure is closely similar to that of $\mathbf{4 b}$. Complex $\mathbf{4 b}$ crystallises with two unique molecules in the asymmetric unit, small differences between the two can be ascribed to crystal packing effects. The structure of $\mathbf{4 l}$ is somewhat different and will be discussed separately.

The crystal structure of $\mathbf{4 e}\left(\mathrm{R}=2-\mathrm{C}_{10} \mathrm{H}_{7}\right)$ was also determined, but is not reported because of disorder within the naphthyl group that it was not possible to model effectively. However, the principal molecular parameters for $\mathbf{4 e}$ are very similar to those of $\mathbf{4 a}$ and the two independent molecules of $\mathbf{4 b}$.

In $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4}$ the alkyne $\mathrm{C} \equiv \mathrm{C}$ has inserted into a $\mathrm{C}=\mathrm{C}$ bond linking one $\mathrm{C}(\mathrm{CN})_{2}$ moiety to the quinonoid ring of TCNQ. There are two possible isomeric products from this reaction, but the only one observed has the $\mathrm{C}(\mathrm{CN})_{2}$ residue attached to C_{2} of $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-$ $\mathrm{C}_{1} \equiv \mathrm{C}_{2}-\mathrm{R}$ and $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{CN})_{2}$ to C_{1}, both by $\mathrm{C}=\mathrm{C}$ bonds. The same isomer was obtained from the reaction of TCNQ with trans $-\mathrm{Pt}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{C}-\mathrm{Me})_{2}[13,14]$.

In 41 the coordination about Ni is similar to that found in many other $\left[\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{X}\right]$ derivatives with the $\mathrm{P}-\mathrm{Ni}-\mathrm{C}$ plane ca. perpendicular to the cyclopentadienyl plane, $89.0(7)^{\circ}$. It is a β isomer (cf. Ref. [24] and references therein) with the $\mathrm{P}(1)-\mathrm{Ni}-\mathrm{C}(5)$ plane oriented so that it is also approximately perpendicular to the σ_{v} plane of the (idealised) $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ni}$ moiety and an ene/enyl distortion of the cyclopentadienyl ligand, $\mathrm{C}(21)-\mathrm{C}(25) / \mathrm{C}(22)-\mathrm{C}(23)-$ $\mathrm{C}(24)$, respectively. The $\mathrm{C}(5)-\mathrm{Ni}-\mathrm{P}$ angle at $97.66(6)^{\circ}$ is at the high end of expectations and larger than that in $\mathbf{1 1}$, $90.29(15)^{\circ}$ [24]. The $\mathrm{Ni}(1)-\mathrm{P}(1)$ distance, $2.1536(5) \AA$, is comparable those in related $\left[\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{L}) \mathrm{R}\right]$ complexes, 2.13-2.16 \AA [24,34-37].

The $\mathrm{Ni}-\mathrm{C}(5)$ bond length, $1.8798(18) \AA$, is greater than that in $11,1.850(5) \AA$ [24], a difference which may be due to the sp^{2} hybridised $\mathrm{C}(5)$ in $\mathbf{4 I}$ and the sp hybridised $\mathrm{C}(1)$ in 11. The $\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\} \mathrm{C}\left\{\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{H}$ ligand is unusual in that all carbon atoms except those of the cyano groups are formally sp^{2} hybridised, but the whole ligand is not planar. The $(\mathrm{NC})_{2} \mathrm{C}(9)=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(5)-\mathrm{Ni}(1)$ part of $\mathbf{4} \mathbf{l}$ is effectively planar with angles of $1.94(4)^{\circ}$ and

1

4

2
5

7

Scheme 1. (i) $\mathrm{TCNQ} / 30^{\circ} \mathrm{C} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. $\mathrm{X}=$ nothing, $1,4-\mathrm{C}_{6} \mathrm{H}_{4}, 1,3-\mathrm{C}_{6} \mathrm{H}_{4}$ and $4,4^{\prime}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$.
$1.48(3)^{\circ}$ between the $(\mathrm{NC})_{2} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}$ and $\mathrm{Ni}(1) \mathrm{C}(5) \mathrm{C}(4) \mathrm{C}(6)$ planes within it. It lies at $85.10(3)^{\circ}$ to the $\mathrm{P}-\mathrm{Ni}(1)-\mathrm{C}(5)$ plane of coordination about Ni , and at $70.68(4)^{\circ}$ to the second important plane within the ligand which is defined by $\mathrm{C}(4) \mathrm{C}(3)(\mathrm{CN})_{2}$. The cis diene system $\mathrm{C}(3)=\mathrm{C}(4)-$ $\mathrm{C}(5)=\mathrm{C}(6)$ is non-planar with a torsion angle of $68.2(3)^{\circ}$. The $\mathrm{C}-\mathrm{C}$ bond lengths lie in the ranges $1.349(3)-$ $1.386(3) \AA$ for those which are formally double bonds, and $1.426(3)-1.447$ (3) \AA for those which are formally single bonds, and those of the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{CN})_{2}$ moiety are similar to those of TCNQ itself [38]. Although most $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles lie close to 120°, coordination about $\mathrm{C}(5)$ is severely distorted with $\mathrm{Ni}(1)-\mathrm{C}(5)-\mathrm{C}(4)=105.13(13)^{\circ}, \mathrm{Ni}(1)-\mathrm{C}(5)-$ $\mathrm{C}(6)=130.46(14)^{\circ} \quad$ and $\quad \mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)=124.16(17)^{\circ}$ (sum $=359.75^{\circ}$). This appears to be due to an interaction between the Ni centre and $\mathrm{C}(4)$ as the $\mathrm{Ni} \cdots \mathrm{C}(4)$ separation is only $2.6502(18) \AA$, whereas the sum of their Van der Wal's radii is $3.4 \AA$. The nature of the substituents on $\mathrm{C}(4)$ suggests that this is a $\mathrm{Ni} \rightarrow \mathrm{C}(4)$ donor-acceptor interaction.

In 4 a the H of $\mathbf{4 1}$ is replaced by a phenyl group. Although the structures of the two are closely related, there are differences which are largely associated with that part of the molecule derived from the $\left[\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{CCR}\right]$ precursor. $\mathbf{4 a}$ is an α_{b} isomer where the $\mathrm{P}-\mathrm{Ni}-\mathrm{C}$ plane is oriented so that the P atom eclipses $\mathrm{C}(22)$ of the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand which is distorted towards a diene, $\mathrm{C}(21)-\mathrm{C}(25)-$ $\mathrm{C}(24)-\mathrm{C}(23)$. Both the $\mathrm{Ni}-\mathrm{P}$ distance, $2.1818(15) \mathrm{A}$, and $\mathrm{C}(5)-\mathrm{Ni}-\mathrm{P}$ angle at $100.29(16)^{\circ}$ are even larger than those in $\mathbf{4 l}$, but the $\mathrm{Ni}-\mathrm{C}(5)$ bond length, $1.912(5) \AA$, is comparable within experimental error. The $(\mathrm{NC})_{2} \mathrm{C}(9)=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(5)-\mathrm{Ni}(1)$ part of $\mathbf{4 a}$ is no longer planar with an angles of $6.8(7)^{\circ}$ and of $5.2(4)^{\circ}$, respectively, between the $(\mathrm{NC})_{2} \mathrm{C}(9)$, the $\mathrm{C}_{6} \mathrm{H}_{4}$ and $\mathrm{Ni}(1) \mathrm{C}(5) \mathrm{C}(4) \mathrm{C}(6)$ planes. The $\mathrm{Ni}(1) \mathrm{C}(5) \mathrm{C}(6)$ plane is at an angle of 69.9° to the $\mathrm{P}(1)-\mathrm{Ni}(1)-\mathrm{C}(5)$ plane. The $\mathrm{Ni}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ plane lies at $73.7(3)^{\circ}$ to the second important plane within the ligand which is defined by $\mathrm{C}(4) \mathrm{C}(3)(\mathrm{CN})_{2}$, and this last plane lies at an angle of $79.0(1)^{\circ}$ to the phenyl ring defined by $\mathrm{C}(61)-$ $\mathrm{C}(66)$. A similar situation has been encountered in derivatives of 1,1-dicyanobuta-1,3-dienes such as $(\mathrm{MeS})_{2} \mathrm{C}=$
$\mathrm{CH}-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}-4\right)=\mathrm{C}(\mathrm{CN})_{2}$ where the phenyl ring is twisted out of the plane of the $\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ system by steric effects [39]. The cis diene system $\mathrm{C}(3)=\mathrm{C}(4)-\mathrm{C}(5)=\mathrm{C}(6)$ is non-planar with a torsion angle of $75.8(7)^{\circ}$. The $\mathrm{C}-\mathrm{C}$ bond lengths lie in the ranges $1.350(7)-1.392(7) \AA$ for those which are formally double bonds, and 1.429(8)$1.450(8) \AA$ for those which are formally single bonds. However, the two single bonds to $\mathrm{C}(4)$ are somewhat longer with $\mathrm{C}(4)-\mathrm{C}(5)=1.472(7) \AA$ and $\mathrm{C}(4)-\mathrm{C}(61)$ (phenyl $)=1.497(7) \AA$. Again, this implies reduced or absent conjugation across these bonds. The dimensions of the $\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}$ moiety are also similar to those of TCNQ itself [38]. The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles lie between 112.7° and 126.4°, with particular distortion about $\mathrm{C}(5) . \mathrm{C}(4)-$ $\mathrm{C}(5)-\mathrm{C}(6)$ is $121.0(5)^{\circ}$, but $\mathrm{Ni}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ is $125.5(4)^{\circ}$ and $\mathrm{Ni}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ is $113.5(4)^{\circ} \quad\left(\mathrm{sum}=360^{\circ}\right)$. This appears to be due to an interaction between $\mathrm{Ni}(1)$ and $\mathrm{C}(4)$, separation $=2.840(5) \AA$, which is similar to, but weaker than, that observed for $\mathbf{4 l}$.

It seems reasonable to suggest that the steric effects of the phenyl (or biphenyl) group are responsible for the structural differences between $\mathbf{4 a}$ (or $\mathbf{4 b}$) and $\mathbf{4}$.

3.2. Spectra

The IR spectra of 4-7 are similar in that they all show a single strong absorption band at $2212 \mathrm{~cm}^{-1}$ which often has a weaker shoulder at $2223 \mathrm{~cm}^{-1}$. These are assigned to the $v(\mathrm{CN})$ vibrations of the complexes; the shoulder occurs at the same frequency as the $v(\mathrm{CN})$ vibration of TCNQ itself. The spectra of 5 and $\mathbf{6}$ also show a band at ca. $2095 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C} \equiv \mathrm{C})$ mode of the unreacted $\mathrm{C} \equiv \mathrm{C}$, and for 5 there is another band at $3300 \mathrm{~cm}^{-1}$ characteristic of a $v(\mathrm{H}-\mathrm{CC})$ vibration.

With the exception of $\mathbf{4 k}$, the ${ }^{1} \mathrm{H}$ NMR spectra of all $\mathbf{4}$ show a singlet signal at $\delta 5.33-5.41$ due to their $\left(\eta^{5}\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$)Ni protons, but those due to the $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{CN})_{2}$ and aryl groups of $\mathbf{4 a} \mathbf{- 4 k}$ often overlap to such an extent that their unambiguous identification and assignment was usually not possible. However, when $\mathrm{R}=\mathrm{H}, 4 \mathbf{1}$, the aryl group resonances are absent; the $\mathrm{Ph}_{3} \mathrm{P}$ ligand gives rise to
a complex multiplet between $\delta 7.2-7.6$, the unique H to a singlet at $\delta 7.07$, and the $\mathrm{C}_{6} H_{4}$ protons to four separate resonances. Those at $\delta 6.58$ and 6.79 couple as do those at δ 7.06 and $7.78(J=9.5 \mathrm{~Hz})$. A further weak coupling is detectable with $J=1.3 \mathrm{~Hz}$ to the $\delta 6.58 / 6.79$ pair and $J=1.8 \mathrm{~Hz}$ to the $\delta 7.06 / 7.78$ pair. In $\mathbf{4 k}$ with its ferrocenyl end group, the obscuring aryl group resonances are also absent and here the $\mathrm{C}_{6} \mathrm{H}_{4}$ give rise to doublet resonances at $\delta(J$ in Hz) 6.93 (9.1), $7.03(9.0), 7.12$ (9.7) and 8.18 (9.4). These are somewhat more deshielded than those of 41, but are comparable to those of the phenanthryl derivative $\mathbf{4 f}(\delta 6.97,7.04,7.22,8.24$) and of other compounds where only some of these resonances could be identified.

The absence of the aryl group in $\mathbf{4 I}$ also allows its ${ }^{13} \mathrm{C}$ NMR spectrum to be assigned with confidence. The $\left(\eta-C_{5} \mathrm{H}_{5}\right)$ group gives rise to a singlet at $\delta 94.9$, and the $\mathrm{Ph}_{3} \mathrm{P}$ ligand to three strong signals. These comprise a singlet at $\delta 131.6$ and two doublets at $\delta 128.9(J=10.8 \mathrm{~Hz})$ and $133.4(J=11 \mathrm{~Hz})$ plus a weaker doublet at $\delta 130.1$ ($J=49 \mathrm{~Hz}$) which are due to p, m, o and ipso carbon atoms, respectively. The four cyano groups are responsible for the four signals at $\delta 112.7,114.4,114.7$ and 114.8; comparable chemical shifts are found for other derivatives containing the $=\mathrm{C}(\mathrm{CN})_{2}$ group. A combination of NOESY, HSQC and gHMBC techniques allow the following ${ }^{13} \mathrm{C}$ $\left({ }^{1} \mathrm{H}\right)$ assignments $\mathrm{C}(3) \delta 69.6(-), \mathrm{C}(4) \delta 161.3$ (7.07), $\mathrm{C}(5) \delta 201.3(-), \mathrm{C}(6) \delta 143.0(-), \mathrm{C}(7) \delta 129.6$ (6.56), $\mathrm{C}(8) \delta 120.1$ (6.78), $\mathrm{C}(9) \delta 156.2(-), \mathrm{C}(10) \delta 124.5$ (7.04), $\mathrm{C}(11) \delta 141.7$ (7.77), $\mathrm{C}(12) \delta 70.7$ (-). The highly deshielded resonance due to $C(5)$, is a very weak doublet with $J=26 \mathrm{~Hz}$, presumably due to coupling with ${ }^{31} \mathrm{P}$. It is also detectable through its correlation with $\mathrm{H}(4)$ in the gHMBC spectrum. In TCNQ itself, the observed resonances are $\delta 150.8\left\{C=\mathrm{C}(\mathrm{CN})_{2}\right\}, 131.3(C-\mathrm{H}), 111.6$ (CN) and $89.8\left\{\mathrm{C}=C(\mathrm{CN})_{2}\right\}[40]$ whilst for 1,1-dicyanobu-ta-1,3-dienes of the general type $\mathrm{MeS}(\mathrm{D}) \mathrm{C}=\mathrm{C}(\mathrm{H})-$ $\mathrm{C}^{\mathrm{b}}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}\right)=\mathrm{C}^{\mathrm{a}}(\mathrm{CN})_{2}$ where $\mathrm{D}=\mathrm{MeS}$ or $\mathrm{Me}_{2} \mathrm{~N}$ the chemical shifts δ for $C \mathrm{~N}=113.3-117.6, C^{a}=62.7-78.6$, $C^{b}=163.9-169.8$ [39], and for various $\mathrm{M}^{3} \mathrm{C}^{3}\left\{=\mathrm{C}^{4}(\mathrm{CN})_{2}\right\}$ $\left\{\mathrm{C}^{2}(\mathrm{Ph})=\mathrm{C}^{1}(\mathrm{CN})_{2}\right\}$ derivatives where $\mathrm{M}=\mathrm{W}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $(\mathrm{CO})_{3}, \mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{DPPE})$ or $\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{CNBu}^{t}\right)_{2}$ the chemical shifts δ for resonances due to $C^{1}=69.3-77.4$, $C^{2}=179.7-182.8, \quad C^{3}=215.1-226.2$ and $C^{4}=90.8-99.8$ [5].

In general, the ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4}$ usually show fewer signals than would be expected, perhaps due to the poor solubility of some compounds and the long relaxation times of some of the tertiary carbon atoms. Furthermore, the presence of $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{CN})_{2}$ and aryl groups can make it difficult to assign the observed resonances. Even for the simplest aryl group, $\mathrm{C}_{6} \mathrm{H}_{5}$, some of its ${ }^{13} \mathrm{C}$ resonances lie very close to or coincide with those due to the $\mathrm{Ph}_{3} \mathrm{P}$ ligand. However, the most obvious difference between the ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 I}$ and the other $\mathbf{4}$ is the chemical shift of the $\mathrm{Ni}-\mathrm{C}-C(4)=\mathrm{C}(\mathrm{CN})_{2}$ resonance which has δ 161.3 for 41 but δ 181-184 in other 4. These chemical shifts should be compared with those for C^{2} in the
$\mathrm{M}-\mathrm{C}^{3}\left\{=\mathrm{C}^{4}(\mathrm{CN})_{2}\right\}\left\{\mathrm{C}^{2}(\mathrm{Ph})=\mathrm{C}^{1}(\mathrm{CN})_{2}\right\}$ derivatives above, δ 179.7-182.8. The signals due to $\mathrm{C}(4)$ and $\mathrm{C}(5)$, now both quaternary, are very weak and not always observed. In favourable instances that at $\delta \mathrm{ca} .200$ due to $\mathrm{C}(5)$ can be resolved into doublet, $J=26 \mathrm{~Hz}$, as a consequence of $\mathrm{C}-{ }^{31} \mathrm{P}$ coupling, otherwise both are rather broad.

The NMR spectra of the di-nickel complexes 5-7 follow the same general pattern as those of $\mathbf{4}$, but with predictable differences, and the often greater constraints due to solubility problems means that few are completely satisfactory ${ }^{13} \mathrm{C}$ NMR spectra were obtained. 5 show resonances at ca. $\delta 1.53-1.70\left({ }^{1} \mathrm{H}\right.$ NMR $)$ and δ ca. $80\left({ }^{13} \mathrm{C}\right.$ NMR $)$ characteristic of the $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}$ group. For 6 , the two different $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)$ moieties each give rise to a $\mathrm{C}_{5} \mathrm{H}_{5}$ resonance, and the $\mathrm{Ni}-\mathrm{C}_{1} \equiv \mathrm{C}_{2}$ moieties gives rise to a doublet at ca. $\delta 83.5-88.6(J=48.1 \mathrm{~Hz})$ and a singlet at $\delta 100.4-$ 118.4 due to C_{1} and C_{2}, respectively, (cf. $\delta 86.2$ with $J=48 \mathrm{~Hz}$ and 119.6 for 1a). Unfortunately, in no case could the intrinsically weak signals at ca. $\delta \mathrm{ca} .180$ and δ ca. 200 be detected.

The electronic spectra of all 4-7 show a broad intense absorption band at ca. $470-480 \mathrm{~nm}$ with a shoulder at ca. 580 nm . This suggests that all 4-7 contain similar or identical chromophores. There are additional absorption bands in the spectra of $\mathbf{4 g}(394 \mathrm{~nm}), \mathbf{4 i}(455 \mathrm{~nm})$ and $\mathbf{4 k}(630 \mathrm{~nm})$ which are probably due to low energy transitions that are essentially localised within the anthryl, perylenyl and ferrocenyl end-groups respectively. Such transitions are found at ca. 375 and 355 nm in anthracene, and ca. 434, 406 and 387 nm in perylene [41].

There are two potential Donor- π-Acceptor moieties within the molecules of 4-7, $\quad \mathrm{D}-\mathrm{C}(\mathrm{Y})=\mathrm{C}(\mathrm{CN})_{2}$ and $\mathrm{Ni}-\mathrm{C}\left(\mathrm{R}^{\prime}\right)=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}$ where the acceptors are both $\mathrm{C}(\mathrm{CN})_{2}$ and the donors D or Ni; $\mathrm{D}=\mathrm{R}, \mathrm{H}, \mathrm{X}-\mathrm{C} \equiv \mathrm{CH}$, $\mathrm{X}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \quad$ or $\quad \mathrm{X}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-$ $\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)$. The first of these is unlikely to be the effective chromophore as the spectra are independent of D even when it is the powerful donor 4-Me $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$. Furthermore, in the solid state at least for $\mathbf{4 a}$ and $\mathbf{4 b}$ the phenyl plane lies at ca. $58-80^{\circ}$ to the plane of the $\mathrm{RC}=\mathrm{C}(\mathrm{CN})_{2}$ chromophore which hinders the necessary conjugation between aryl donor and CN acceptor and results in a long $\mathrm{C}(4)-\mathrm{C}(61)$ bond. Further evidence is provided by the spectrum of the ferrocenyl derivative $\mathbf{4 k}$ which confirms that it does not contain a functioning $\mathrm{Fc}-\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ chromophore \{for $\mathrm{Fc}-\mathrm{CH}=\mathrm{C}(\mathrm{CN})_{2}$, $\lambda_{\text {max }} \quad 326 \mathrm{~nm} \quad\left(\varepsilon=14000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), \quad 534 \mathrm{~nm} \quad(\varepsilon=$ $\left.\left.2400 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right\}[16]$. Consequently the spectroscopic evidence suggests that $\mathrm{Ni}-\mathrm{C}\left(\mathrm{R}^{\prime}\right)=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}$ is the effective chromophore in 4-7. This is supported by the crystallographic evidence which shows that in 41 it is planar and in $\mathbf{4 a}$ and $\mathbf{4 b}$ it is close to planar, which allows effective π-communication between the electron-rich Ni donor and the cyano acceptors. This chromophore maybe described by a mixture of resonance forms, Fig. 4. Bond lengths suggest that in the ground state A predominates, but others are possible in which there is charge separation and of partic-

A

B

Fig. 4. Resonance forms of the $\mathrm{Ni}-\mathrm{C}(\mathrm{Z})=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}$ chromophore in 4-7.
ular importance will be those in which the C_{6} ring is aromatic, e.g. B, Fig. 4. These charge-separated mesomers probably make a larger contribution to the excited states of the system than they do to the ground state.

3.3. Electrochemistry

The electrochemistries of $\mathbf{1}$ have been reported previously. 1a and $\mathbf{1 1}$ undergo a quasi-reversible oxidation with $E_{\mathrm{p}}=0.81 \mathrm{~V}$ and 0.83 V , respectively. For the TCNQ adducts, 41 shows an irreversible oxidation, $E_{\mathrm{p}}=$ ca. 1 V , and two reversible reductions at -0.26 and -0.47 V \{vs. $\left.\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right\}$ (Fig. 5). TCNQ itself shows two reversible reductions at 0.21 and -0.33 V (vs. SCE) [42]. In contrast $\mathbf{4 a}$, chosen as typical of other $\mathbf{4}$, shows a quasi reversible oxidation at ca. 1 V , which is characteristic of compounds containing the $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)$ moiety, plus complicated reduction processes. Elucidation of such processes for $\mathbf{4 a}$ and the apparently anomalous behaviour of $\mathbf{4 l}$ are the subject of further investigation.

3.4. Reaction pathway

The reactions of $\mathbf{1}-\mathbf{3}$ with TCNQ are fast with no evidence for the formation of intermediates such as the green paramagnetic compound or the cyclobutenyl derivative observed during the reaction of TCNE with $\mathrm{W}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ -$(\mathrm{CO})_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}[5]$.

TCNQ inserts exclusively into the Ni-substituted $\mathrm{C} \equiv \mathrm{C}$ of 2 rather than the $\mathrm{C} \equiv \mathrm{CH}$. The spectroscopic evidence

Fig. 5. Cyclic voltammogram of $\mathbf{4 l}\left(\mathrm{Pt} /\right.$ acetone/0.1 M TEAP/ vs. $\left[\mathrm{Fe}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]^{+/ 0}, 0.0 \mathrm{~V}$).
for this is unambiguous. The IR spectra of 5 all show an absorption band at ca. $3300 \mathrm{~cm}^{-1}$ due the $v(\mathrm{H}-\mathrm{CC})$ vibration, their ${ }^{1} \mathrm{H}$ NMR spectra show a $H-\mathrm{C} \equiv \mathrm{C}$ resonance at ca. $\delta 1.6$, and their ${ }^{13} \mathrm{C}$ NMR spectra (when obtainable) show singlet $\mathrm{HC} \equiv \mathrm{C}$ resonances at ca. $\delta 80$, respectively, rather than the doublet at ca. $\delta 87$ and singlet at ca. δ $100-120$ which would be expected for a $\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ -$\left(\mathrm{PPh}_{3}\right)-\mathrm{C} \equiv \mathrm{C}$ moiety. This behaviour contrasts with that of $\mathrm{W}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Fc}(\mathrm{Fc}=$ ferrocenyl) which reacts with TCNE to form $\mathrm{W}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}-$ $\mathrm{C} \equiv \mathrm{C}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{Fc}$ i.e. the metalattached $\mathrm{C} \equiv \mathrm{C}$ is not the one which is attacked [11]. There is no reaction between TCNQ and $\mathrm{Fc}-\mathrm{C} \equiv \mathrm{CH}$.

4. Conclusions

$\mathrm{C} \equiv \mathrm{C}$ triple bonds in $\mathbf{1 , 2}$ and $\mathbf{3}$ (two) which are directly bonded to Ni are able to insert into one of the $\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ double bonds of 7,7,8,8-tetracyanoquinodimethane, TCNQ, to give complexes $\mathbf{4}, \mathbf{5}, \mathbf{6}$ and 7 containing the $\mathrm{Ni}-\mathrm{C}\left\{=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{=\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{X}$ group (two such groups in 7). However, no such reaction takes place between TCNQ and the $\mathrm{C} \equiv \mathrm{CH}$ moieties of $\mathbf{2}$, even though they are conjugated with Ni , or between TCNQ and normal alkynes such as $\mathrm{PhC} \equiv \mathrm{CH}, \mathrm{PhC} \equiv \mathrm{CPh}, 1,4-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{C} \equiv \mathrm{CH})_{2}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CH}\right)$, $(\mathrm{FcC} \equiv \mathrm{CH})$. This contrasts with the reactions of $\mathrm{C}_{2}(\mathrm{CN})_{4}$, TCNE, which with $\mathrm{FcC} \equiv \mathrm{CH}, \mathrm{FcC} \equiv \mathrm{CFc}$ and one of the triple bonds of $\mathrm{FcC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CFc}$ to give tetracyanobutadiene derivatives [41]. Clearly, TCNQ is a less reactive electrophile than TCNE. Furthermore, only one of the two $\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ bonds of TCNQ reacts with $\mathbf{1}-\mathbf{3}$ even when they are in excess.
$\mathrm{Ni}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)-\mathrm{C}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{C}\left\{\mathrm{C}(\mathrm{CN})_{2}\right\}-\mathrm{D}$ complexes contain two potential chromophores, $\mathrm{Ni}-$ $\mathrm{C}=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}$ and $\mathrm{D}-\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$, but as all 4, 5, $\mathbf{6}$ and 7 have almost identical visible spectra which are different from those of known $\mathrm{D}-\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ derivatives, only the first is effective. This is consistent with the molecular structures of $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 l}$ which show the $\mathrm{NiC}\left(\mathrm{C}_{\beta}\right)=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}$ moieties to be planar or close to it whilst the aryl groups are far from coplanar with the $\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ fragment. The X-ray diffraction studies also show that there is a significant $\mathrm{Ni} \rightarrow \mathrm{C}_{\beta}$ $=\mathrm{C}(\mathrm{CN})_{2}$ interaction which is greater for $\mathrm{R}=\mathrm{H}$ than for $\mathrm{R}=\mathrm{Ph}$ or 4-biphenyl.

Acknowledgements

P.B. thanks Enterprise Ireland and Schering-Plough (Avondale) for financial support. We also thank the New Zealand Foundation for Research Science and Technology for a Postdoctoral Fellowship to C.J.M. and the Chemistry Department, University of Otago for financial assistance.

Appendix A. Supplementary material

CCDC 660589, 660590 and 660591 contain the supplementary crystallographic data for $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 l}$. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/ j.jorganchem.2007.11.029.

References

[1] A. Davidson, J. P Solar, J. Organomet. Chem. 166 (1979) C13.
[2] M.I. Bruce, T.W. Hambley, M.R. Snow, A.G. Swincer, J. Chem. Soc., Chem. Commun. (1981) 271.
[3] P. Hong, K. Sonogashira, N. Hagihara, J. Organomet. Chem. 219 (1981) 363.
[4] M.I. Bruce, T.W. Hambley, J.R. Rodgers, M.R. Snow, A.G. Swincer, J. Organomet. Chem. 226 (1982) C1.
[5] M.I. Bruce, T.W. Hambley, M.R. Snow, A.G. Swincer, Organometallics 4 (1985) 501.
[6] Y. Yamamoto, R. Satoh, T. Tanase, J. Chem. Soc., Dalton Trans. (1995) 307.
[7] K. Onitsuka, S. Takahashi, J. Chem. Soc., Chem. Commun. (1995) 2095.
[8] M.I. Bruce, M. Ke, P.J. Low, B.W. Skelton, A.H. White, Organometallics 17 (1998) 3539.
[9] K. Onitsuka, N. Ose, E. Ozawa, S. Takahashi, J. Organomet. Chem. 578 (1999) 169.
[10] M.I. Bruce, B.C. Hall, P.J. Low, B.W. Skelton, A.H. White, J. Organomet. Chem. 59 (2001) 74.
[11] M.I. Bruce, M.E. Smith, B.W. Skelton, A.H. White, J. Organomet. Chem. 637-639 (2001) 484.
[12] Chao-Wan Chang, Ying-Chih Lin, Gene-Hsiang Lee, Yu Wang, J. Chem. Soc., Dalton Trans. (1999) 4223.
[13] M. Masai, K. Sonogashira, N. Hagihara, J. Organomet. Chem. 34 (1972) 397.
[14] K. Onuma, Y. Kai, N. Yasuoka, N. Kasai, Bull. Chem. Soc. Jpn. 48 (1975) 1696.
[15] J.D. McKinney, P.A. Anderson, T.A. Hamor, C.J. Jones, A. Porch, J. Organomet. Chem. 558 (1998) 147.
[16] J.F. Gallagher, R.D.A. Hudson, A.R. Manning, J. Simpson, Unpublished work.
[17] K.W. Barnett, J. Chem. Ed. 519 (1974) 422.
[18] S. Myano, I. Izumi, H. Hashimoto, J. Chem. Soc., Dalton Trans. (1995) 307.
[19] M. Matsumoto, K. Kuroda, Tetrahedron Lett. 21 (1980) 4021.
[20] L. Brandsma, Preparative Acetylenic Chemistry, Elsevier, Amsterdam, 1988.
[21] A.S. Hay, J. Org. Chem. 25 (1960) 637
[22] K. Sonogashira, Y. Yatake, Y. Tohoda, S. Takahashi, N. Hagihara, J. Chem. Soc., Dalton Trans. (1977) 291.
[23] I.R. Whittall, M.P. Cifuentes, M.G. Humphrey, B. Luther-Davies, M. Samoc, S. Houbrechts, A. Persoons, G.A. Heath, D. Bogsányi, Organometallics 16 (1997) 2631.
[24] J.F. Gallagher, P. Butler, R.D.A. Hudson, A.R. Manning, J. Chem. Soc., Dalton Trans. (2002) 75;
P. Butler, J.F. Gallagher, A.R. Manning, H. Mueller-Bunz, C.J. McAdam, J. Simpson, B.H. Robinson, J. Organomet. Chem. 690 (2005) 4545.
[25] smart: Area Detector Control; Bruker AXS, Madison, WI, USA, 1994.
[26] apexiI V1.017, Diffractometer Control Software. Bruker AXS Inc., Madison, Wisconsin, USA, 2004.
[27] saint: Area detector integration software; Bruker AXS, Madison, WI, USA, 1994 and 2004.
[28] sadabs (Absorption Correction for Area Detector Data); Bruker AXS, Madison WI, USA, 1997 and 2004.
[29] G.M. Sheldrick, shelxs-97. A Program for the Solution of Crystal Structures from Diffraction Data, University of Göttingen, Federal Republic of Germany, 1990.
[30] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 26 (1993) 343-350.
[31] G.M. Sheldrick, shelxl-97 A Program for the Refinement of Crystal Structures, University of Göttingen, Federal Republic of Germany, 1997.
[32] K.A. Hunter, J. Simpson, titan2000 A molecular graphics program to aid structure solution and refinement with the sHELX suite of programs, University of Otago, New Zealand, 1999.
[33] H.D. Flack, Acta Crystallogr. Sect. B39 (1983) 876.
[34] R.H. Naulty, M.P. Cifuentes, M.G. Humphrey, S. Houbrechts, C. Boutton, A. Persoons, G.A. Heath, D.C.R. Hockless, B. Luther-Davies, M. Samoc, J. Chem. Soc., Dalton Trans. (1997) 4167.
[35] I.R. Whittall, M.G. Humphrey, D.C.R. Hockless, Aust. J. Chem. 51 (1998) 219.
[36] P. Butler, J.F. Gallagher, A.R. Manning, Inorg. Chem. Commun. 1 (1998) 343.
[37] J.F. Gallagher, P. Butler, A.R. Manning, Acta Crystallogr. C54 (1998) 342.
[38] R.E. Long, R.A. Sparks, K.N. Trueblood, Acta Crystallogr. 18 (1965) 876.
[39] T. Freier, M. Michalik, K. Peseke, H. Reinke, J. Chem. Soc., Perkin Trans. 2 (1999) 1265.
[40] C.J. McAdam, Unpublished work.
[41] E. Clar, Polycyclic Hydrocarbons, Academic Press, London, 1964.
[42] T. Mochida, S. Yamazaki, J. Chem. Soc., Dalton Trans. (2002) 3559.

[^0]: * Corresponding author. Tel.: +353 1 7062495; fax: +353 17062127.

 E-mail addresses: Anthony.Manning@ucd.ie (A.R. Manning), Jsimpson@alkali.otago.ac.nz (J. Simpson).

